Search results

Search for "Lyapunov filter" in Full Text gives 3 result(s) in Beilstein Journal of Nanotechnology.

A review of demodulation techniques for multifrequency atomic force microscopy

  • David M. Harcombe,
  • Michael G. Ruppert and
  • Andrew J. Fleming

Beilstein J. Nanotechnol. 2020, 11, 76–91, doi:10.3762/bjnano.11.8

Graphical Abstract
  • multifrequency atomic force microscopy. The compared methods include the lock-in amplifier, coherent demodulator, Kalman filter, Lyapunov filter, and direct-design demodulator. Each method is implemented on a field-programmable gate array (FPGA) with a sampling rate of 1.5 MHz. The metrics for comparison include
  • ; Kalman filter; Lyapunov filter; digital signal processing; field-programmable gate array (FPGA); Introduction Atomic force microscopy (AFM) [1] has enabled innovation in nanoscale engineering since it was invented in 1986 by Binnig and co-workers. Atomic-scale topographical resolution is achieved by
  • its implementation complexity. This heavily limits the achievable sampling rate and ability to track a large number of signals. To alleviate this issue, the Lyapunov filter [33] was established, which is computationally more efficient than the Kalman filter while achieving similar performance [34
PDF
Album
Review
Published 07 Jan 2020

Lyapunov estimation for high-speed demodulation in multifrequency atomic force microscopy

  • David M. Harcombe,
  • Michael G. Ruppert,
  • Michael R. P. Ragazzon and
  • Andrew J. Fleming

Beilstein J. Nanotechnol. 2018, 9, 490–498, doi:10.3762/bjnano.9.47

Graphical Abstract
  • , enabling both z-axis feedback and phase contrast imaging to be achieved. This article proposes a model-based multifrequency Lyapunov filter implemented on a field-programmable gate array (FPGA) for high-speed MF-AFM demodulation. System descriptions and simulations are verified by experimental results
  • ; digital signal processing; field-programmable gate array (FPGA); high-speed; Lyapunov filter; multifrequency; Introduction Atomic force microscopy (AFM) [1] has been integral in the field of nanoscale engineering since its invention in 1986 by Binnig et al. By sensing microcantilever tip–sample
  • modeled. This reduces its realizable performance through limitations of the sample rate. An estimator in the form of a Lyapunov filter [25] was demonstrated to perform similarly to the Kalman filter [26]. However, the Lyapunov filter complexity scales significantly better than the Kalman filter when
PDF
Album
Full Research Paper
Published 08 Feb 2018

A review of demodulation techniques for amplitude-modulation atomic force microscopy

  • Michael G. Ruppert,
  • David M. Harcombe,
  • Michael R. P. Ragazzon,
  • S. O. Reza Moheimani and
  • Andrew J. Fleming

Beilstein J. Nanotechnol. 2017, 8, 1407–1426, doi:10.3762/bjnano.8.142

Graphical Abstract
  • the signal has motivated the development of filters such as the time-varying Kalman filter [44] and Lyapunov filter [45][46]. These methods are based on a linear parametric model of the cantilever deflection signal and were shown to be extendable for the estimation of multiple frequencies for
  • -modulation AFM over their entire tracking bandwidth range. The methods considered are the lock-in amplifier, high-bandwidth lock-in amplifier, Lyapunov filter, Kalman filter, RMS-to-DC conversion (moving-average filter and mean absolute deviation computation), peak detector and coherent demodulator. To make
  • . Amplitude and phase are recovered by employing the output equations in Equation 4. Lyapunov filter The Lyapunov filter is conceptually related to the Kalman filter in the sense that it uses feedback to correct the estimated quadrature and in-phase states of Equation 3 of the linear parameterization of the
PDF
Album
Review
Published 10 Jul 2017
Other Beilstein-Institut Open Science Activities